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An arbitrary oriented Riemannian manifold of  real dimension two is a complex 
manifold that is also the world sheet of  an oriented closed string. Another example 
is the complex Grassmann manifold of  p-planes in C 2p, which is shown to carry 
the most symmetric state of 9Li. In both cases we are concerned with a chiral 
spinor field on a curved surface that gives rise to anyons in the nuclear case. 
Specifically we find a distorted torus on a K~ihter manifold which is also a 
Calabi-Yau space. 

1. INTRODUCTION 

This paper emphasizes the common geometry of string fields and nuclear 
surfaces, that is, two-dimensional surfaces upon which nucleons move in 
certain states. An example is given by 9Li analyzed in Section 3. It is well 
known that particles with spin and parity moving on a surface will exhibit 
fractional statistics (Lerda, 1992; Wen et  al., 1989). Therefore it should come 
as no surprise that fractional statistics have been calculated for 9Li. The 
analysis is reviewed in Section 3. However, spinor string fields are also 
supposed to admit positive and negative chirality (Green et al., 1988), so 
perhaps it should be expected that they require the same geometry, namely a 
two-dimensional surface on a K~ler  manifold. In this way geometry replaces 
mechanics and it is revealing that the same manifold should emerge from 
two completely different approaches. 

The methods used to analyze the nuclear case have been reviewed in 
Section 1 of de Wet (1994), so only enough background to show the connection 
with K~ler  spaces will be given here. 
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We construct the tensor products, in the enveloping algebra A(~/) of the 
Dirac ring, of an irreducible self-representation 

1 ~i ~ = (iE4t~ l + E2311j 2 + E14d)3 + Eos~J4)e (1.1) 
4 

with itself. Here Eddington's E-numbers are related to the Dirac matrices by 

%, = iEo,,, E~,, = E , ~ E , , ,  EZ~,~ = - 1 ,  Eo.,, = -E, ,~,  

~ < v = l  . . . . .  5 

and the commuting operators E23, El4, E05 are, respectively, independent 
infinitesimal rotations in 3-space, 4-space, and isospace that correspond to 
the spin ~r, parity ~r, and charge T3 carried by a single nucleon. The parameters 
q/2, ~/3, 1~/4 are half-angles of rotation and e is a primitive idempotent of the 
Dirac ring; E4 is the unit matrix. 

A rotation through 1 80 ~ about x will change spin up to spin down and 
if this is followed by a rotation of 180 ~ about t, x can go to - x  without 
inverting time, but instead changing to a left-handed coordinate system, in 
other words, causing a parity reversal (EI4 ~ - E l 4  ). 

The basis elements of A(~/) are the 4 A • 4 A matrices (A = N + Z) 

E~v = E4 @ " "  @ E4 @ Ep~v @ E4 @ " "  @ E4 

with E ~  in the / th  position. The elements E ~  and b?l+l _ ~  commute and A(',/) 
is found to have the following generators: 

1 
F~ ) = ~ (E01, + E ~  + . . .  + E4~), v = 1 . . . . .  5 (1.2a) 

o.(A) = [F(IjA), r(vA)] = 1 1 r ~ ( E ~  + E2,  + . . .  + E4,) (1.2b) 

"q~) Eo~ | �9 | Eo~ 1 2 . . . . .  Eo~Eo~ "" E'~ (1.2c) 

"q~ = "q~)'q~) = Ew, E ~ '  2 , . . E a ,  I~ < v = 1 . . . . .  5 (l .2d) 

Then the irreducible representations or minimal left ideals of A(-r are 

~(A) = E C[• (1.3) 

with 

Cixl = ixlC(E~3 . . .  ~x2Fx2+l . . .  rx2+x3tz• . . .  EAs-X9 ~ 2 3 ~ 1 4  ~14 ~05 

if C denotes summation over the 

(1.4) 

Ntx I = A!/(NI[ N2! •3! X4!) 
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combinations of the basis elements contained in the bracket. Here [k] is 
a partition 

and 

~k I -]- )k 2 -1- h 3 -b )k 4 ~- A (1.5) 

' -A "A •1 h2 k3 h4 A) ~'1 X2 h3 X4 P[h] = l (1 1~1 I~/2 ~/3 1~/4 "1- qf]~3 11/2 ~/1 +4  1I/3 

-~- ~(A),I,XI,I,X2d,h3,I,X4 "l'- "Ill 1~4 I1/3 I~/2 ~/1 )lEA ( 1 . 6 a )  .114'+'3 t~4 t{-'l w2 A) hi X2 X3 k4 

is a projection operator satisfying 

P~x] = Ptx]t~, qJ ~ I~/lqJ21~f31~J 4 (l.6b) 

Also lEA = e | " -  | e = ele 2 . "  e a is a primitive idempotent in A(-r so that 
equation (1.6a) has the same form for A nucleons as the basic relation (1.1). 

Each partition (1.5) represents a charge-spin state of the nucleus. By 
choosing 4 X 4 matrix representations for E23, EI4, E05 and factoring out 
those configurations that are the same up to a rearrangement that does not 
affect the net spin, parity, or charge, it may be shown (de Wet, 1973) that 
C[x] decomposes beautifully into subspaces constituting isobaric multiplets 
characterized by the neutron and proton numbers N = (hi + k2), Z = (h 3 
+ ha). If we focus on one member of the multiplet, the first two terms of 
(1.6a), with the same values of Z, N, will belong to the same nucleus; but 
in the third and fourth terms (k3 + X4) has replaced (hI + X2), so charge 
has been reversed and a mirror nucleus emerges. 

The possible states [h] = [hl•2h3)k4] of the mirror nuclei 9Li and 9C are 
set out in Table I, which follows the scheme of (1.6a). We note that the first 
and second, third and fourth terms differ in that (X2 + h3) replaces (h t + 
)t4). Thus if (X2 + h3) is the number of particles with a given spin, there will 
be two possible spin states s for each nucleus. Finally, if (h2 + X4) is the 
number of particles with a given parity p, these changes lead automatically 
to parity reversals. In Table I the values of 

2~(Z) = 2is ,  rro = 2 ip  = 2~r~ z~ u23 = O- 0 

have been obtained by assuming that (k2 + h3) is the number of nucleons 
with a negative spin and (X2 + )k4) the number with positive parity. It is then 
possible to substitute directly into equation (3.5) to find the eigenvalues of 
CtA 1 and compare them with a computer calculation based on the matrix 
representation (3.6) of o'0, 'rr0. The fact that the agreement is exact confirms 
the canonical labeling adopted and enables each row of the matrix CtA 1 to 
be labeled. 

The Ctx I of (1.4) are invariant operators, but it will be shown in Section 
3 that it is possible to choose one operator Cta I (belonging to the fundamental 
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state [A] = [A~A2A3A4] which need not be the ground state) that is also CP- 
invariant. Special cases of Ctx~ have already been encountered in (1.2), namely 

C[(A- I)100] = 2i(a- l)(rl 

C[(A-D010] = 2i(A-t)'trl 

C[(A- 1)0011 = 2i(a- I)F(A) ( 1 . 7 )  

where 

io'1 ----- i~ A) = sl, i'rrl ---- io']'~ ) = p 

The matrix representations 

5 A) k (ri = EN | PFi 4- N[" i (~ Ee 

(r(iA) -- 'rri = EN | PFi - UFi | Ee, i = 1, 2, 3 (1.8) 

are just those of Biedenharn and Louck (1981) for a coupled system of 
spinning protons and neutrons and provide the required connection between 
equation (1.1) and nuclear theory. Here PFi and tVF i are (P + 1)- and (N + 
l)-dimensional Lie operators of S03 and Ee and EN are (P + 1) and (N + 
1) unit matrices. Also, ~i and "rri are the infinitesimal operators of the four- 
dimensional rotation group 04, so we have found a supermultiplet augmented 
by the invariant operators CEA 1. 

This paper is about nuclear trajectories on a curved surface, but apart 
from this motion, it will emerge in Section 3 that the entire distorted torus 
of Fig. 1 also rotates about the axis X4 = -Xs,  thereby imparting orbital 
angular momentum to the system. 

The operators exp(CEa1) are representations of the orthogonal group O(p) 
if (h2 + h3) is even, but representations of SO(p + q) if (k2 + h3) is odd. 
Here p, q are greater than 2 and 

1 
p = q = ~ ( Z +  1 ) ( U +  1) 

if Z or N, or both, are odd 

1 
= (q + 1) = ~  { ( Z +  1 ) ( N +  1) + 1} 

if both Z, N are even (1.9) 

The matrices SO(p + q) rotate thep-planes in a complex Grassmann manifold 
(Kobayashi and Nomizu, 1969, Chapter IX, equation 6.4) and in the following 
sections the theorem on exponentiation of a finite matrix developed by de 
Wet (1994) will be used to analyze the differential geometry of this manifold 
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(also called a Kfihler manifold). In particular an expression will be derived 
in Section 3 for the connection coefficients from which it follows that the 
components of the Ricci curvature tensor vanish. Using a corollary due to 
Kobayashi and Nomizu (1969, Chapter X, w we can find a two-dimensional 
surface on the K~ihler manifold that carries the nucleons of 9Li. 

2.  M E A S U R E  O N  A C O M P L E X  G R A S S M A N N  M A N I F O L D  

In this section we will find a corollary to the theorem derived by de 
Wet (1994) on the exponentiation of Lie algebras. This theorem is valid for 
all representations of the Lie algebra of a compact Lie group G and in the 
case of a noncompact group may be adapted by using the dual representation 
0 --> i0 so that the circular functions sin 0, cos 0 map into their hyperbolic 
counterparts sinh 0, cosh 0. However, here we are concerned with orthogonal 
groups and will find a simple orthogonality relationship that enables the 
coefficients ai, bi of the exponential expansion to be expressed in closed 
form. We can then go on to confirm a metric proposed by Wong for the 
complex Grassmann manifold. 

Theorem. 
L If ~x is a class 1 matrix with the characteristic equation 

Ix(Ix - 1)(Ix - k2) "'" (Ix - Xn) = 0 ( 2 . 1 a )  

then we may write 

e / ~ Z ~  I -[ - ~ [.LJ~j(O)+i ~ pJSj(O) (2.1b) 
j =  1,2 .... j= 1,2 .... 

where 

then 

where 

~j(O) = bjo + bjl c o s  0 q- bj2 c o s  ~k20 + " ' "  + bjn c o s  )kn0 ( 2 . 1 C )  

Sj(O) = bsi sin 0 + bj2 sin )t20 + "'" + bj-n sin hn0 (2.1d) 

II. If IX is a class 2 matrix with the characteristic equation 

ix(ix 2 + 1)(ix 2 + h2) . . .  (ix 2 + h 2) = 0 (2.2a) 

2n 2 n -  ] 

e ~ ~  1 + ~ txJ~j(0)+ ~ ~xJSj(O) (2.2b) 
j = 2,4 .... j = 1,3 .... 

i;-ISj(O) = ajl sin 0 + aj2 sin )k20 n t- " ' "  Jr- ai n sin hn0 (2.2c) 
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and 

~j+~(0) = f Sj(0) dO (2.2d) 

The eigenvalues h2 . . . . .  h,  are positive, and it always is possible to reduce 
any set of  eigenvalues to the positive canonical form 0, 1, h2 . . . . .  hn by 
subtracting a constant Xt to translate the spectrum and then dividing by a 
factor hf so that one eigenvalue of  the translated spectrum has the value unity. 
This follows because if A X  = kX, then (A - X~)X = (k  - kt)X. 

An elementary application of  equations (2.1) and (2.2) is to find represen- 
tations of  S03. In the case of  j = 2 the characteristic equation is 

~L(~lb 2 q- 1)(Ix 2 + 4) = 0 

and the representation D(2) " ,, ,,tTr/2, 0, rr) is given by 

1 ~2 ~2 
e ~~ = ~ (].t 2 + 1)(I,Z 2 + 4) -- ~ (] j2 _.}_ 4) cos 0 + ]-~ (~t.s 2 "]- 1) cos 20 

with 

t �9 p. + -~ (p5 + 4) sin 0 - ~ ([Z 2 "+- 1) sin 20 

( j m  + llp~]jm) = [(j  - m ) ( j  + m + 1)] '/2 

( jm  - ll~[jm) = - [ ( j  + m ) ( j  - m + 1)1 '/2 

However ,  we can also write (2.3) as 

e~ 0 _ F0(p,) + p, Fl(p,_....._~) cos 0 + p'F2(lx) 
Fo(0) iF~(i) 2iF2(2i) 

if  

+ iFI(P') sin 0 + iF2(Ix) sin 20 
El(i) F2(2i) 

F(bt  ) = D(I~ 2 + 1)(bt 2 + 4) = 0 

Fo(~) =- F(~) /~  

FI(Ix ) = F(bQ/(D z + 1) 

F2(O~ ) ~ F(I,~)/(I~ 2 + 4) 

The Fi( i ,  ) are orthogonal functions satisfying 

Fj(~)Vk(~) = 0 

and the following is a generalization of  (2.4). 

- -  cos 20 

(2.3) 

(2.3a) 

(2.4) 

(2.5) 

(2.6) 
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Corollary. In the general case where 

F(~z) = Ix(p2 + 1)(ix2 + h~) ---  (IX2 + h~) = 0 

Fk(I.L) = F(Ix)/(IX 2 + h 2) 

Fo(~) = F(p~)/IX 

we have 

Fo(IX ) n Fk(IX ) 
e~O -- + Ix 

Fo(0) k=l,2,.., iX~F(ikk) 

+i  --2 Fk(~) s inhk0 
k= 1,2,... Fk(ih~) 

Proof  In the diagonal  representat ion 

IXd = diag(0, i, ik 2 . . . . .  ihn) 

(2.7) becomes  

e~dO ..= 

- -  cos )tk0 

(2.7) 

e ix~O = diag(1, e i~ . e ixnO) (2.7a) F~(ixd) 

~=o,1,2,... F(ik~) "" ' 

because Fk(ixd)/Fk(ihk) will assign a one to each row of  the identity matrix 
E. Here repeated roots are treated as though they are independent,  so if  k~ 
�9 . k 

is n-fold degenerate,  there will be n terms e 'x 0 on the right-hand side of  
(2.7a). This conf i rms (2.7) and because Fj(Ix)F~(Ix) = 0, we  have 

eP.dO[e~dO]t = ~ (Fk(p'd) i 2 
~=o,,,... \ ~ ]  = E (2.8) 

In the general  case there is some orthogonal  t ransformation S such that 

Ix = SixeS -1, e ~~ = Se~~ -1 

but 

SFk(p~d)S -1 = S I X d S - I S ( ~  2 + 1 ) S - 1 S ( ~  2 + )k2)S -1  . . .  S ( ~  2 + ) t2)S - j  

= Ix(ix2 + 1)(tx2 + X 2 ) . . .  (p2 + k]) = F~(IX) 

[where the factor (Ix 2 + k~) is omitted]. Therefore  writ ing (2.7a) as 

e~e0 _ F o ( ~ e )  + ~d 
F0(0) ~=l,a,... i)t~F~(ikk) cos kk0 + i ~ Fk(p~ sin kk0 

Fk(ixd) 

k= 1,2,... Fk(ihk) 
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and operating on both sides with S, S -  l, we again obtain (2.7). This completes 
the proof, and it may similarly be shown that in the case of the class 1 
matrices where 

we have 

Fk(IX) = ~(IX -- 1)(~ -- k2)" ' "  (~ -- Xn)/(~ -- ~,~) 

n_L Fk(ix ) 
e i~~ = ~ e ix~~ Fj(I~)Fk(IX ) = 0 (2.9) 

~=0,t,... Fk(Xk) 

ei~O[ei~O] t = ~ [Fk(IX) q2 
k=0,1 .... [ _ ~ j  = E (2.9a) 

Equations (2.7) and (2.9) are a restatement of the nuclear spectral theorem 
for pure states, because by virtue of the state labeling summarized in the 
introduction, each state [h.lhZ~.3h4] yields an eigenvalue kk of Cix I determined 
precisely by the numbers of nucleons with given spin, parity, and charge. 
Thus the rows of the matrix I~, which are the states [h], may be labeled by 
zt, = ikk0. 

We can now use (2.7) to find a measure g on the complex Grassmann 
manifold by following Kobayashi and Nomizu (1969, Chapter IX, w and 
Wong (1967). On these manifolds tz has the complex structure 

[A - A  ] 

where A is a real p • p matrix, and (2.7) shows that it is possible to write 

Zo (2.9b) e ~~ = Zo(cos 0) + Zl(sin 0) = Zl Zo 

because Z0 depends only on the even powers of IX, and Z1 only on the odd. 
Then if T = Zl Z~ x, 

dT dT t 
ds 2 = Tr (2.10) 

(1 + T~')(1 + T~') 

where T t, dT  t are the conjugate transposes of T, dT (ibid.). At T = 0 this 
reduces to the metric 

ds 2 = Tr dT dT t (2.10a) 

To evaluate (2.10), we need some special properties of the orthogonal func- 
tions F(I~). To begin with, set 0 = 0 in (2.7) and square to find 
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_ Fo(~) + p2~, (Fk(~)/pO 
1 F0(0) ..= ihkF(ik~) 

= [Fo( l ' s  2 ~ji4 ~ [(Fk(~L)/~l~)12 
LF-7~J + , : ,  L ~ J  

Comparing coefficients, we find 

[p~(F~(IX)/~)] 2 =  ihkFk(ikk)(F~(~)/~) (2.1 la) 

Now because 

F(>) = tx(I x2 + 1)(l_t 2 + }k2) . - .  ( t ,  2 -+- ;k2) . . .  (la, 2 + ;k 2) - 0 

we find that 

~3(~2 _}_ 1)(~,2 _{_ ~.2) . . .  (~2 q_ )k2) = _~2~s .}_ 1)(~12 _}_ )k2) . . .  (t.g2 q_ ?,2) 

or  

g2(Fk(pO/p0 = _x2(&(~) /~)  - 

by (2.11a). Then 

and 

[ F k ~ ! ]  2 _ Fk(ihk)(iRk) Fk(~)p, 

ihk[tx( FJt* ) ] 2 
Fk(ihk) 

(2.1 lb) 

Z o  1 - Fo(['-L) 
Fo(O) 

,s 
- - -  + ~ Z (cos  x k 0 ) - '  

k= 1,2,... ihkF(ihk) 
and the odd powers of  Ix yield 

Z1 

Returning to (2.10), 

is idempotent, 

K2(~) = Kk(>), 

Only when t,z = I-t,d do we find 

Kk(p,) = 1, 

Kk(>)Ky(I,) = 0 (2.1 ld) 

K -= ~] Kk(la,) = E (2.11e) 
k 

= i ~] Fk(I.Z) sin kk0 
k= l,... &(iRk) 

(ix0 Fk(~) 
K ~ ( ~ )  = - -  ( 2 . 1  l c )  

Fk(iX0 
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Thus 

T = Z l Z f f  1 = - 7  i ' t  = ~L 

by (2.11 a), and 

TT t = 

•] tan h~0 (2.12) 
i(F~(IX)/Ix) 

k = l , 2  .... F,(ikk) 

Kk(t~) tan2X~0 (2.12a) 
k =  1,... 

again by (2.11 a). Now apply the idempotent property (2.1 l d) to write 

(1 + x) -1 ~ -  1 - x + x 2 - x 3 + "" "; x = T T  t 

= 1 + Kl(lz)(-tan20 + tan40 - tan60 + ." ") 

+ K2(i,z)(-tan2h20 + tanah20 - tan6h20 + . . . )  

-31- . . .  

+ Kn(ix)(-tan2kn0 + tanahn0 - tan6hn0 + . . . )  

= 1 + Kl(ix)[(1 + tan20) -1 - 1] + Kz(Ix)[(1 + tan2h20) - 1 -  1] 

+ " "  + Kn(Ix)[(1 + t an2h ,0 ) -  1] (2.12b) 

By (2.12) 

so that 

and (2.10) yields 

d T  = tx dO ~ Kk(p, )  sec2~kk0 
k 

d T / ( 1  + T T ' )  = IX dO K = P~a dO (2.13) 

P 

ds  2 = Y r  ~J~d~d d02 = ~ dzk -dzzk (2.13a) 
k =  1,2 

for the diagonal case. This is simply the differential of the sum of the squares 
of the n angles h~0 between two consecutive p planes in the 2p-dimensional 
Euclidean space E 2p in accord with a theorem due to Wong (1967). Since 
there is now more than one angle, we find more than one angular momentum 
series, as will be illustrated by 9Li in Section 3. These fractional chiral-spin 
statistics square with the fact that the nucleons are moving on a surface 
(Lerda, 1992). 

Equation (2.13a) is a flat measure which is known to be carried by the 
torus. In fact the closure of geodesics in a submanifold of the Kahler manifold 
has been shown by Wong (1967, Theorem 14) to be analytically homeomor- 
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phic with a toms if one or more of the eigenvalues hk are zero. In the next 
section 9Li will serve as an example where it is necessary to introduce a 
translation hf which distorts the fiat metric. 

3. THE MANIFOLD OF LITHIUM-9 

In this section we will look at the geodesics obtained by de Wet (1994) 
for 9Li in a different light. Instead of considering these to be the paths of 
mesons, we will take the more logical view that the nucleons themselves 
move on a two-dimensional geodesic surface and can therefore behave as 
anyons. This is a surface on a complex Grassmann or K/ihler manifold which 
is also known to be the world sheet of an oriented closed string (Green et  
al., 1988, Chapter 15). Thus there is an intimate relationship between string 
fields and the motion of nucleons (in certain states) which reinforces the 
view that strings are supposed to be the ultimate constituents of matter. 

The CP-invariant operator for 9Li is C[3303] , where [At Az A3 A4] = [3 303] 
--- [A] is also the ground state with spin 3/2. We rewrite (1.4) in the form 

; A 1 ~A2~A3qr'A4 C[A ] t vO t~O "tO - -  E ; h ' l ~h2~k3qr ' h4  = , u 0 - o  "0 (3.1) 
h 

where 

Cro ~ 2cr(2 {~ = (E213 q'- " ' "  -}- EA3)  

9rr(A) = ( E l 4  + . - .  + E1A4) q-I- 0 ~ ~ v 1 4  

To -= 2F(5 a) = (Eo~5 + "'" + EoAs) (3.2a) 

are related to the real quantum s, p, T3 = �89 - N) of spin, parity, and charge by 

cr o = 2is, r = 2ip, To = 2iT3 (3.2b) 

The summation contains all those terms arising from repeated indices 
Ei23EJ23, EJ3EJ14, EJ23EJos, EJ4EJo5 that yield a single term by the multiplica- 

E ~3  

E J05 

tion table 

i 2 

iUo5 
iEJi4 

Ultimately (3.1) will be expressed in the 
To is just the diagonal matrix i (Z  - N ) .  An 

(roTo = P(E~3EJos) 

EJI4 EJo5 
iEio5 iEJ 4 

i 2 iU23 (3.3) 
iEJ23 i 2 

bilinear form A(cr0, "n'o) because 
elementary example is 

+ iwo (3.4a) 
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Table I. Coherent States of 9Li, 9C 

9Li 9C 

p -  + - + 

s + - - + 9Li 9C C[33o3 I 
hi h2X3 h4 h2hl X4h3 h3 h4 ~'1 ~'2 h4 h3 ~'2 ~kl ~ "rro 0"0 "/'go = C130331 CI3033[/16 

6003* 0630 0360 3006 9i - 3 i  9i 3i 160i 10i 
6012 0621 1260 2106 7i - 5 i  7i 5i 80i 5i 
6021" 0612 2160 1206 5i - 7 i  5i 7i - 8 0 i  - 5 i  
6030 0603 3060 0306 3i - 9 i  3i 9i - 1 6 0 i  - 1 0 i  

5103" 1530 0351 3015 7i - i  7i i 40i 2.5i 
5112 1521 1251 2115 5i - 3 i  5i 3i 40i 2.5i 
5121" 1512 2151 1215 3i - 5 i  3i 5i - 4 0 i  - 2 . 5 i  
5130 1503 3051 0315 i - 7 i  i 7i - 4 0 i  - 2 . 5 i  

4203* 2430 0342 3024 5i i 5i - i  - 3 2 i  - 2 i  
4212 2421 1242 2124 3i - i  3i i 16i i 
4221" 2412 2142 1224 i - 3 i  i 3i - 1 6 i  - i  
4230 2403 3042 0324 - i  - 5 i  - i  5i 32i 2i 

A 3303* 3330 0333 A 3033 3i 3i 3i - 3 i  - 5 6 i  - 3 . 5 i  
3321" 3312 2133 1233 - i  - i  - i  + i  - 8 i  - �89 

where P denotes summation over the A!/(A - n)! permutations of the n 
bracketed generators. Then 

C[(a-2)lO1]] i(a-2) = P(E~3EJos) = 0-oTo- i7o (3.4b) 
is an extension of the basic relation (1.7). 

In the case 9Li we "add" another nucleon by multiplying (3.4a) by 0-o 
= (Ez13 + . . -  + E93) to obtain 

O-o2To i j = P(E23Ez3Eo5 ) + 2iP(E~3E~4 ) + 9i2T0 

and continue the process until ultimately the invariant operator for 9Li is 
"3 i j k l m n 

C[3303] = t P ( E 2 3 E 2 3 E 2 3  E05 E05 Eo5)/(3.3 !) 

-6-  1 (0-03 + 703) + 23 (0-072 + 0-270) + ~ (0-0 + 7o) (3.5a) 

after writing To = i(Z - N) -- - 3 i .  In the case of the mirror nucleus 9C, To 
= 3i and 

1 3 ~ 
C[3033 ] = 6 (0.3 _ ,if3) .if_ 2 ({T0 7 2 __ 0-271.0) .4_ (0-0 - fro) ( 3 . 5 b )  

These operators are manifestly CP-symmetric because T3 ~ -T3  is accompa- 
nied by 'fro --~ - 7 o  and moreover their matrix representations are identical 
up to a rearrangement of rows and columns. 
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Table 1 is an evaluation of 6[3303] and 6[3033] for the coherent states of 
9Li and 96, where we have assumed that (~2 + )t3) is the number of states 
with a negative spin and (k2 + M) the number with a positive parity. The 
first and fourth columns [h~ h2 h3 )k4] and [h 4 ~-3 ~-2 hi] have been used to find 
Go and 7o. If the second and third columns had been chosen, both spins (to 
and parities 7 0 would have changed sign, which would have simply reversed 
the sign of C[A]. 

A matrix representation for (to, 7to is provided by (1.8), which in the 
case of 9Li is 

O'o = E6 @ 3'3 + 2/6 @ E3, 71"o = E6 @ "Y3 - 'Y6 @ E3 (3.6) 

where E is the unit matrix and "/3, ~6 are the Lie operators (2.3a) with IX 
replaced by 23t~, k = 3, 6. With this representation, (3.5a) becomes 

2 
6[3303 ] : ~ {5E6 @ .y2 _ 3.,/2 @ "Y3 + 17E6 @ "Y3} (3.7) 

The computed eigenvalues of (3.7) divided by 16 are the same as those of 
Table I, which is strong confirmation of the state labeling. The matrix is 
reducible and the submatrix containing the state [A] with the eigenvalue 

3 ,f5 0 ,/15 0 
4 2 

5 0 - 2 , j 3  3 ,/3 

5 3 ,/--5 o - ~  0 

3"/5 

0 

0 

3 ,/3 
2 

0 

-2,/3 

3 ,/3 

(5 

-3 .5 i  is 

5 
4 

3 ,/5 

0 

,/15 
2 A 

16 0 

3 ,/3 -3  0 

11 3 ,/5 - 2 , / 3  
4 4 

3 .,/5 5 0 

5 
- 2 , / 3  0 - ~  

,/15 0 3 ,/5 
2 

with eigenvalues 

{ - 5 ;  -3 .5 ;  -2 .5 ;  - 2 ;  - 1 ;  -0 .5 ;  2.5; 10} 

m 

Xl 

X2 

X3 

0 X4 

,/15 
X5 

2 

0 X6 

3,/5 x; 
4 

5 
-~ x~ 

(3.8a) 

(3.8b) 
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corresponding to the states marked with an asterisk in Table I. The remaining 
eight states will be opposite in sign, but will include [3330] and [3312]. 
Unfortunately, it is not possible to assign these states uniquely to the rows 
of (3.8a), which have simply been labeled by the coordinates Xi (i = 1 , . . . ,  
8). Now we add 5 to the set (3.8b) and divide by 3 to get the canonical set 

{ 1 5 1 ; 4 3 5 )  
o; ~; ~; 3; ~; ~; 5 (3.8c)  

so that the complex structure of the K~thler manifold is given 

Ix = ~ - A  + 3 - E s  5 o" | E8; o" = _ 1 

(3.9) 

with the characteristic equation 

Then writing 

e B~ = e~~ -(5/3)'~~ | E8); e-(5/3)cr0 = 
[cos 0 sin301 

s in~0  c o s 5 0  ] 

(3.1o) 

(3.11) 

we can use (2.7) to calculate the complementary functions 

0 5 3 1 4 . 3 
64X4= 9 s i n ~ + 5 s i n ~ 0 + ~ s i n 0  + ~ s i n ~ 0 + 3 s m ~ 0  

5 ~ . 5 
+ 15 sin ~ 0 + 22.5 sin 50) sm ~ 0 (3.12a) 

0 5 3 1 4 . 3 
64X5= 9 s i n ~ + 5 s i n ~ 0 - ~ s i n 0 - ~ s i n ~ 0 +  3 s m ~ 0  

) + 15 sin ~ O - 22.5 sin 50 sin~O = -X4(1080 ~  O) (3.12b) 



Nuclear and String Fields on a K~ihler Manifold 1079 

~ ~Li~ C 

/ 
@ - .:_.~ ~ . . . .  ~ i  ~ "  

/ 

/ 

647~  

Fig. 1. Geodesics on the manifold of 9Li, 9C. 

/ 

64.'/.~ 

which are in the box in the fourth column of (3.8a) (or the 12th column of 
B) and assumed to be associated with [A]. We may now use a theorem of 
Kobayashi and Nomizu (1969, Chapter X, w to plot Fig. 1, which is Fig. 
2 of de Wet (1994) redrawn to show the cross section of a geodesic starting 
from the origin and lying on a distorted torus rotating about X4,-Xs. Other 
geodesics on this Kahler manifold can be obtained by rotations which fix 
the origin. To show that this geodesic field corresponds to the motion of 
nucleons, we calculate the charge density p = e+t~ t, where qJ is the entire 
wave function of (2.7), namely that corresponding to the whole of the 12th 
row of B which will also include the cosine terms. We find the term at the 
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intersection of the 12th row and column is 

5 
~ *  = [e2~~ cos 2 ~ 0 

- 6 4 -  1 + 9 c o s 0  + 5 c o s g 0  + " "  + cos 100 cos 2505 

so integrating over a strip 64/15'rr units wide (87 units to the scale of Fig. 
1) and along a length 12"rr -- 2160 ~ corresponding to one complete cycle, 
we confirm that 

p = ( N - Z ) e = 3 e  

This is equivalent to a 20-fold figure 8 winding around the toms. 
Returning to (3.12), multiple-angle formulas may be used to express sin 

50 in terms of sin 0; {sin 5/20; sin 3/20} in terms of sin 0/2; and sin 8/60 
in terms of sin 5/60; so that there are actually three different sets of translated 
chiral-spin angular momenta. Chiral-spin has been associated with fractional 
statistics by Wen et al. (1989) and it has been emphasized by Lerda (1992) 
that any spin, or fractional statistic, is possible for nucleons moving on a 
surface. These are called anyons and further show that the Kfihler manifold 
carries a nuclear field. 

The eigenvalues (3.8c) are somewhat arbitrary because the theorem only 
requires that one member of the set be unity. However, by (2.7) the coefficients 
Fk(p,)lFk(ikk) will not be altered by another choice k~ ~ kj/n (or IX ~ ix~n). 
There will, however, also be a change of the argument )tO to k O/n, but O/n 
can simply be represented by another parameter tp, so the shape of the 
geodesics will be unaffected. 

Using (3.11), it follows that (2.12) is now 

T = _ ~ t  = ix tan ktO ~ i(Fk(ix)/ix) tan kk0 (3.13) 
k=l .... F~(ih~) 

where ht = 5/3. 
Thus dTI r=0 = 0, so the metric (2.10a) for this case is quite different 

and no longer flat. We have a distorted toms with 

dT=ixdO( tanxtO~Kk(~)sec2hkO} 

TT t = tan2ht0 ~ Kk(ix) tan2h~0 
k 

(1 + TT') -1 = 1 + ~ Kk(tx){(1 + tan2Xt0 tan2kk0) - 1 -  1} (3.14) 
k 
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and 

dT tan htO sec2h~0 
1 + - dO 1 + tan2kt0 tan2kk0 

= dTt(1 + TT') -1 if ~ --~ ~ (3.15) 

From (3.15) we can easily find the nonzero components 

O g~a O 
F~c = gaTt -~  gcTt, V~e = ~ g~d (3.16) 

of the affine connection with b = k,0, b = -h ,0  (Green et al., 1988, w 15.3.3). 
But in view of (2.10) we will only be interested in 

- 0 0 In det g (3.17) 
0--~ 

where k = hk0 and k = --kk0. From (3.17) we deduce that the components 

0 - 
R ~  - Oc F-~7r 

of the Ricci curvature tensor will vanish, which is a requirement of those 
K~ihler manifolds referred to as Calabi-Yau spaces by string theorists. How- 
ever, using the definition given by Kobayashi and Nomizu (1969, Chapter 
IX,  w the sectional curvature Rk~k~ of each plane p, with orthogonal basis 
k, k, will not vanish. We find instead that 

- _ OZgjg 0 2 g~ OgkT, Ogff, OZgff, ~ = (3.18) 
R ~ 5  = ~ gk~ - Ok O~ OkOk OjOj 

so curvature is determined by the orientation of the remaining p-planes. This 
means that a spinor field corresponding to the state [Xk] and propagated 
parallelly only around the section k k will return to its original value. But 
this is precisely the condition found by Green et al. (1988, Chapter 15) to 
show that a Calabi-Yau space carries a string field. Therefore chiral spinor 
fields define the same space for nucleons and strings! 

4. CONCLUSION 

It should be emphasized that half the states of Table I will not exhibit 
a complex structure because (h2 + ~3) is even. Therefore CEx I will be a 
polynomial in even values of a0, 7r0 and belong to the vertical subspace h. 
The characteristic equation will now take the form (2.1a), and (2.1b) will 
yield a representation of the orthogonal group O(p). An example is 8Li, 
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discussed by de Wet (1994), but there Fig. 1 is misleading because a geodesic 
field does not apply to representations on h. However ,  representations of  
O(p) will motivate a shell structure except that the orbits need not define a 
two-dimensional  surface. 
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